linest.Rd
Compute linear estimates, i.e. L %*% beta
for a range of models. One example of
linear estimates is population means (also known as LSMEANS).
Model object
Either NULL
or a matrix with p columns where p is
the number of parameters in the systematic effects in the
model. If NULL
then L
is taken to be the p times
p identity matrix
Additional arguments; currently not used.
Specification of the parameters estimates for which confidence intervals are to be calculated.
The level of the (asymptotic) confidence interval.
Should confidence interval appear in output.
A dataframe with results from computing the contrasts.
## Make balanced dataset
dat.bal <- expand.grid(list(AA=factor(1:2), BB=factor(1:3), CC=factor(1:3)))
dat.bal$y <- rnorm(nrow(dat.bal))
## Make unbalanced dataset
# 'BB' is nested within 'CC' so BB=1 is only found when CC=1
# and BB=2,3 are found in each CC=2,3,4
dat.nst <- dat.bal
dat.nst$CC <-factor(c(1,1,2,2,2,2,1,1,3,3,3,3,1,1,4,4,4,4))
mod.bal <- lm(y ~ AA + BB * CC, data=dat.bal)
mod.nst <- lm(y ~ AA + BB : CC, data=dat.nst)
L <- LE_matrix(mod.nst, effect=c("BB", "CC"))
linest( mod.nst, L )
#> estimate std.error statistic df p.value
#> [1,] 0.0070647 0.2439499 0.0289598 10.0000000 0.9775
#> [2,] NA NA NA NA NA
#> [3,] NA NA NA NA NA
#> [4,] NA NA NA NA NA
#> [5,] 0.0211182 0.4225336 0.0499800 10.0000000 0.9611
#> [6,] 1.0559073 0.4225336 2.4989899 10.0000000 0.0315
#> [7,] NA NA NA NA NA
#> [8,] 0.6592607 0.4225336 1.5602562 10.0000000 0.1498
#> [9,] 1.1315871 0.4225336 2.6780995 10.0000000 0.0232
#> [10,] NA NA NA NA NA
#> [11,] -0.9210848 0.4225336 -2.1799087 10.0000000 0.0543
#> [12,] NA NA NA NA NA