vignettes/sectioning_fun.Rmd
sectioning_fun.Rmd
section_fun()
The section_fun
utility in doBy creates
a new function by fixing some arguments of an existing
function. The result is a section of the original function,
defined only on the remaining arguments.
For example, if you have:
then fixing yields:
In R
terms, section_fun
lets you
programmatically create such specialized versions.
section_fun
works
section_fun()
offers three ways to fix arguments:
Example:
fun <- function(a, b, c=4, d=9) {
a + b + c + d
}
fun_def <- section_fun(fun, list(b=7, d=10))
fun_def
#> function (a, c = 4, b = 7, d = 10)
#> {
#> a + b + c + d
#> }
fun_body <- section_fun(fun, list(b=7, d=10), method="sub")
fun_body
#> function (a, c = 4)
#> {
#> b = 7
#> d = 10
#> a + b + c + d
#> }
fun_env <- section_fun(fun, list(b=7, d=10), method = "env")
fun_env
#> function (a, c = 4)
#> {
#> . <- "use get_section(function_name) to see section"
#> . <- "use get_fun(function_name) to see original function"
#> args <- arg_getter()
#> do.call(fun, args)
#> }
#> <environment: 0x5dbe22a24b68>
You can inspect the environment-based section:
get_section(fun_env)
#> $b
#> [1] 7
#>
#> $d
#> [1] 10
## same as: attr(fun_env, "arg_env")$args
get_fun(fun_env)
#> <srcref: file "" chars 1:9 to 3:1>
## same as: environment(fun_env)$fun
Example evaluations:
fun(a=10, b=7, c=5, d=10)
#> [1] 32
fun_def(a=10, c=5)
#> [1] 32
fun_body(a=10, c=5)
#> [1] 32
fun_env(a=10, c=5)
#> [1] 32
Suppose you want to benchmark a function for different input values without writing repetitive code:
Instead of typing the following
microbenchmark(
inv_toep(4), inv_toep(8), inv_toep(16),
times=3
)
you can create specialized versions programmatically:
n.vec <- c(4, 8, 16)
fun_list <- lapply(n.vec,
function(ni) {
section_fun(inv_toep, list(n=ni))
})
fun_list
#> [[1]]
#> function (n = 4)
#> {
#> solve(toeplitz(1:n))
#> }
#>
#> [[2]]
#> function (n = 8)
#> {
#> solve(toeplitz(1:n))
#> }
#>
#> [[3]]
#> function (n = 16)
#> {
#> solve(toeplitz(1:n))
#> }
Inspect and evaluate:
fun_list[[1]]
#> function (n = 4)
#> {
#> solve(toeplitz(1:n))
#> }
fun_list[[1]]()
#> [,1] [,2] [,3] [,4]
#> [1,] -0.4 0.5 0.0 0.1
#> [2,] 0.5 -1.0 0.5 0.0
#> [3,] 0.0 0.5 -1.0 0.5
#> [4,] 0.1 0.0 0.5 -0.4
To use with microbenchmark, we need expressions:
We get:
bq_fun_list <- bquote_list(fun_list)
bq_fun_list
#> [[1]]
#> (function (n = 4)
#> {
#> solve(toeplitz(1:n))
#> })()
#>
#> [[2]]
#> (function (n = 8)
#> {
#> solve(toeplitz(1:n))
#> })()
#>
#> [[3]]
#> (function (n = 16)
#> {
#> solve(toeplitz(1:n))
#> })()
bq_fun_list[[1]]
#> (function (n = 4)
#> {
#> solve(toeplitz(1:n))
#> })()
eval(bq_fun_list[[1]])
#> [,1] [,2] [,3] [,4]
#> [1,] -0.4 0.5 0.0 0.1
#> [2,] 0.5 -1.0 0.5 0.0
#> [3,] 0.0 0.5 -1.0 0.5
#> [4,] 0.1 0.0 0.5 -0.4
Now run:
microbenchmark(
list = bq_fun_list,
times = 5
)
#> Unit: microseconds
#> expr min lq mean median
#> (function (n = 4) { solve(toeplitz(1:n)) })() 8.20 8.57 19.1 9.07
#> (function (n = 8) { solve(toeplitz(1:n)) })() 9.61 9.83 10.9 9.98
#> (function (n = 16) { solve(toeplitz(1:n)) })() 14.96 15.28 17.6 15.42
#> uq max neval cld
#> 12.8 56.7 5 a
#> 11.2 13.9 5 a
#> 19.3 22.9 5 a
Running the code below provides a benchmark of the different ways of sectioning in terms of speed.
n.vec <- seq(20, 80, by=20)
fun_def <- lapply(n.vec,
function(n){
section_fun(inv_toep, list(n=n), method="def")
})
fun_body <- lapply(n.vec,
function(n){
section_fun(inv_toep, list(n=n), method="sub")
})
fun_env <- lapply(n.vec,
function(n){
section_fun(inv_toep, list(n=n), method="env")
})
names(fun_def) <- paste0("def", n.vec)
names(fun_body) <- paste0("body", n.vec)
names(fun_env) <- paste0("env", n.vec)
bq_fun_list <- bquote_list(c(fun_def, fun_body, fun_env))
bq_fun_list |> head()
#> $def20
#> (function (n = 20)
#> {
#> solve(toeplitz(1:n))
#> })()
#>
#> $def40
#> (function (n = 40)
#> {
#> solve(toeplitz(1:n))
#> })()
#>
#> $def60
#> (function (n = 60)
#> {
#> solve(toeplitz(1:n))
#> })()
#>
#> $def80
#> (function (n = 80)
#> {
#> solve(toeplitz(1:n))
#> })()
#>
#> $body20
#> (function ()
#> {
#> n = 20
#> solve(toeplitz(1:n))
#> })()
#>
#> $body40
#> (function ()
#> {
#> n = 40
#> solve(toeplitz(1:n))
#> })()
mb <- microbenchmark(
list = bq_fun_list,
times = 2
)
mb
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> def20 25.8 25.8 68.8 68.8 111.8 111.8 2 a
#> def40 65.7 65.7 66.6 66.6 67.4 67.4 2 a
#> def60 152.6 152.6 159.6 159.6 166.5 166.5 2 a
#> def80 301.9 301.9 304.0 304.0 306.1 306.1 2 a
#> body20 27.7 27.7 387.6 387.6 747.6 747.6 2 a
#> body40 63.4 63.4 469.2 469.2 874.9 874.9 2 a
#> body60 157.9 157.9 550.0 550.0 942.2 942.2 2 a
#> body80 299.0 299.0 662.2 662.2 1025.4 1025.4 2 a
#> env20 25.9 25.9 430.4 430.4 835.0 835.0 2 a
#> env40 65.2 65.2 72.3 72.3 79.5 79.5 2 a
#> env60 155.6 155.6 161.7 161.7 167.9 167.9 2 a
#> env80 317.8 317.8 318.1 318.1 318.4 318.4 2 a