Add predicted values of different types to dataframe
add_pred(data, model, var = "pred", type = NULL, transformation = NULL)
dataframe / tibble
data(cars)
lm1 <- lm(dist ~ speed + I(speed^2), data=cars)
lm1 |> response() |> head()
#> 1 2 3 4 5 6
#> 2 10 4 22 16 10
cars <- cars |> add_pred(lm1)
cars |> head()
#> speed dist pred
#> 1 4 2 7.722637
#> 2 4 10 7.722637
#> 3 7 4 13.761157
#> 4 7 22 13.761157
#> 5 8 16 16.173834
#> 6 9 10 18.786430
cars <- cars |> add_resid(lm1)
cars
#> speed dist pred resid
#> 1 4 2 7.722637 -5.7226371
#> 2 4 10 7.722637 2.2773629
#> 3 7 4 13.761157 -9.7611569
#> 4 7 22 13.761157 8.2388431
#> 5 8 16 16.173834 -0.1738340
#> 6 9 10 18.786430 -8.7864298
#> 7 10 18 21.598944 -3.5989441
#> 8 10 26 21.598944 4.4010559
#> 9 10 34 21.598944 12.4010559
#> 10 11 17 24.611377 -7.6113771
#> 11 11 28 24.611377 3.3886229
#> 12 12 14 27.823729 -13.8237287
#> 13 12 20 27.823729 -7.8237287
#> 14 12 24 27.823729 -3.8237287
#> 15 12 28 27.823729 0.1762713
#> 16 13 26 31.235999 -5.2359988
#> 17 13 34 31.235999 2.7640012
#> 18 13 34 31.235999 2.7640012
#> 19 13 46 31.235999 14.7640012
#> 20 14 26 34.848188 -8.8481876
#> 21 14 36 34.848188 1.1518124
#> 22 14 60 34.848188 25.1518124
#> 23 14 80 34.848188 45.1518124
#> 24 15 20 38.660295 -18.6602950
#> 25 15 26 38.660295 -12.6602950
#> 26 15 54 38.660295 15.3397050
#> 27 16 32 42.672321 -10.6723209
#> 28 16 40 42.672321 -2.6723209
#> 29 17 32 46.884266 -14.8842655
#> 30 17 40 46.884266 -6.8842655
#> 31 17 50 46.884266 3.1157345
#> 32 18 42 51.296129 -9.2961287
#> 33 18 56 51.296129 4.7038713
#> 34 18 76 51.296129 24.7038713
#> 35 18 84 51.296129 32.7038713
#> 36 19 36 55.907911 -19.9079105
#> 37 19 46 55.907911 -9.9079105
#> 38 19 68 55.907911 12.0920895
#> 39 20 32 60.719611 -28.7196109
#> 40 20 48 60.719611 -12.7196109
#> 41 20 52 60.719611 -8.7196109
#> 42 20 56 60.719611 -4.7196109
#> 43 20 64 60.719611 3.2803891
#> 44 22 66 70.942768 -4.9427675
#> 45 23 54 76.354224 -22.3542237
#> 46 24 70 81.965599 -11.9655985
#> 47 24 92 81.965599 10.0344015
#> 48 24 93 81.965599 11.0344015
#> 49 24 120 81.965599 38.0344015
#> 50 25 85 87.776892 -2.7768919