get_ddf_Lb.Rd
Get adjusted denominator degrees freedom for testing Lb=0 in a linear mixed model where L is a restriction matrix.
get_Lb_ddf(object, L)
# S3 method for lmerMod
get_Lb_ddf(object, L)
get_ddf_Lb(object, Lcoef)
# S3 method for lmerMod
get_ddf_Lb(object, Lcoef)
Lb_ddf(L, V0, Vadj)
ddf_Lb(VVa, Lcoef, VV0 = VVa)
A linear mixed model object.
A vector with the same length as fixef(object)
or a matrix
with the same number of columns as the length of fixef(object)
Linear contrast matrix
The unadjusted and the adjusted covariance matrices for the fixed
effects parameters. The unadjusted covariance matrix is obtained with
vcov()
and adjusted with vcovAdj()
.
Adjusted covariance matrix
Unadjusted covariance matrix
Adjusted degrees of freedom (adjustment made by a Kenward-Roger approximation).
Ulrich Halekoh, Søren Højsgaard (2014)., A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models - The R Package pbkrtest., Journal of Statistical Software, 58(10), 1-30., https://www.jstatsoft.org/v59/i09/
(fmLarge <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: sleepstudy
#> REML criterion at convergence: 1743.628
#> Random effects:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.741
#> Days 5.922 0.07
#> Residual 25.592
#> Number of obs: 180, groups: Subject, 18
#> Fixed Effects:
#> (Intercept) Days
#> 251.41 10.47
## removing Days
(fmSmall <- lmer(Reaction ~ 1 + (Days|Subject), sleepstudy))
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ 1 + (Days | Subject)
#> Data: sleepstudy
#> REML criterion at convergence: 1769.845
#> Random effects:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 25.53
#> Days 11.93 -0.18
#> Residual 25.59
#> Number of obs: 180, groups: Subject, 18
#> Fixed Effects:
#> (Intercept)
#> 257.8
anova(fmLarge, fmSmall)
#> refitting model(s) with ML (instead of REML)
#> Data: sleepstudy
#> Models:
#> fmSmall: Reaction ~ 1 + (Days | Subject)
#> fmLarge: Reaction ~ Days + (Days | Subject)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> fmSmall 5 1785.5 1801.4 -887.74 1775.5
#> fmLarge 6 1763.9 1783.1 -875.97 1751.9 23.537 1 1.226e-06 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
KRmodcomp(fmLarge, fmSmall) ## 17 denominator df's
#> large : Reaction ~ Days + (Days | Subject)
#> small : Reaction ~ 1 + (Days | Subject)
#> stat ndf ddf F.scaling p.value
#> Ftest 45.853 1.000 17.000 1 3.264e-06 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
get_Lb_ddf(fmLarge, c(0, 1)) ## 17 denominator df's
#> [1] 17
# Notice: The restriction matrix L corresponding to the test above
# can be found with
L <- model2restriction_matrix(fmLarge, fmSmall)
L
#> [,1] [,2]
#> [1,] 0 1